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The rheological effect on the temperature field in a homogeneous tissue under SHF hyperthermia treatment 

is discussed. 

We consider the influence of the II'yushin parameter 

z 0 D 
II = (1) 

on tissue heating at some fixed values of the thermophysical parameters with use of different blood flow models. 

Blood as a suspension of its cells (leukocytes, erythrocytes, etc.) in plasma has a substantial non-Newtonian 

character. The rheological behavior of a nonlinear-viscoplastic medium in the general case is described by the 

Shul'man equation [1 ] 

I/n I/n 
= ~o + (Up 7) vm . (2) 

At present the special case of Eq. (2) for n -- m --- 2, namely, the Casson model is most commonly used. In [2 ], it 

is proposed to subdivide the curve of normal blood flow into three sections: 1) Casson flow () = 0.5-25 sec-1), 2) 

Newtonian flow O > 100 sec-1), and 3) intermediate flow between above. 

Until recently the Casson flow curve has been assumed valid for normal blood when the latter is not 

subjected to various (thermal, chemical, radiative) effects. A deviation from the Casson dependence is assumed in 

the case of pathologies (ischemia, diabetes, blood diseases, etc.). However, numerous bacteriological analyses 

conducted at the town of Nizhnii Novgorod in recent years have revealed that the Casson flow curve (CFC) is not 

adequate for the behavior of normal blood. Figure 1 shows the results of rheometry experiments conducted and 

processed by A. N. Sundukov. He has used three pairs of nonlinear viscoplasticity parameters in the general law 

(2): a) n -- m --- 1, the Schvedov-Bingham fluid (a linear model); b) n -- m = 2, the Casson fluid flow; c) n --- m = 

3, a more general relation. 
Inadequacy of the CFC is especially evident for small () < 0.1 sec -I) and very small O < 0.01 sec -t) shear 

rates. But it is just this range where the most important deaggregation-aggregation processes of structural 
formations of blood cells take place. Processing in terms of rl/2 _ )1/2 does not linearize the initial section of the 

experimental flow curve, which, in turn, leads to incorrect prediction of the an important rheological parameter of 

blood, namely, yield stress z. But processing in terms of ~7~/3 _ )1/3 results in practically complete linearization 

of the actual flow curve of normal blood. Each pathology, in fact, must reflect on the theological behavior of blood, 

which is indirectly expressed through a change of the ESR. We may say with assurance that the flow curve must 

be characterized for many diseases by n ~ m within 1 _ n _< 3; 1 _< m _< 3, with n and m not necessarily being 

integers. 
For any inelastic non-Newtonian fluid flow in a cylindrical pipe its mass flow rate Q and flow curve f(r) 

are related by the universal Mooney-Rabinovich equation [1 ] 
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Fig. 1. Data of A. N. Sundukov on blood rheology (healthy persons at age 
30): 1) n ffi m = 1; 2) 2; 3) 3. T l/n, (mPa)l/n;  ~,l/rn, sec-l/m 

1 ~w f 2f(T) dr, (3) 
3 

7~R3 Vw r0 

where R is the pipe radius; T is the shear  stress on its wall. 

in our cases 

Vn.m (4) / ( r ) = ( V n _ ~ 0 )  , 

where n -- m = 3 or n = m = 2. Substituting (4) into (3) and integrating, we arrive at the following expressions for 

the relative flow rates: 

Q n , m /  Q.~ = ~, ,,,,,, (~) , (s)  

where 

~n=m=2 (~) = 1 - ~ + ~ - i ~ 4  (6) 

36 ~1/3 36 ~2,3 4 1 4 
~On,m= 3 (~) = 1 - ~i- + 1-0 - 3 ~ + ~ ~ " (7) 

H e re  ~ = T0/r  w = lo/R is the relat ive width of the  quasisolid core; QH = :rR4Ap/8/~p L is the  Newton ian  

(Poiseuille) fluid flow rate through the cross-section of a cylindrical pipe. 

Equation (5) gives the change in the flow rate relative to the Newtonian analog. In the general case, it does 

not correspond to the relative change in blood flow (perfiasion f or mass velocity of blood flow w b) before and after 

hyperthermia t reatment  since before this procedure the blood is non-Newtonian and is characterized in part by the 

viscoplasticity parameter  Ilin. 

Because of the complicated nature of blood suspension the II 'yushin parameter  fails to adequately describe 

the rheological behavior of blood. The  non-Newtonian character  of blood is manifested also in the absence of 

slructurization, i.e., at r0 = 0. In this case, pseudoplasticity is retained, i.e., viscosity decreases with increase in 

the shear rate, and the blood behaves like a nonlinear-viscous nonplastic fluid. 

A simultaneous and more complete account of nonlinear viscosity and viscoplasticity is at tained when n 

and m are not integers or are not equal to each other. As a rule, these parameters are not integers in practice, even 

if they are close in value. However, z0 as the structural characteristic of blood is the governing factor both in 

normality and pathology. Therefore  in our analysis we prefer to use the II 'yushin parameter  for the present.  
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In the general case n ~  m the nonlinear viscosity is characterized by the complex [3 ]: 

~0 L rem 
s = (8) 

rem--n/m ' 
/tp u 

which turns into the parameter  I1 at n = m .  

From definition (1) of the II 'yushin parameter  and equat ion (3) we can easily derive an expression for the 

relative change in the fluid flow rate through a cylindrical channel for arbi t rary positive n and m. If n and m are 

integers, we may write 

1 l/n,m 1 ~ ( _ l ) k c k  (m-kynT&O n 
/ ( 0  = 7p  ( T a  - ~o ) - tip ~=o 

Substituting this equation into (3), we obtain (see [1 ]) 

n ~ R  3 m/n ( 9 )  

Q = 3n + m tip rw Tn,m (~),  

where 

k 
m ( -  1) k Cm (10) 

Tn, m (~) = ~, (Bk/Bo) (~k/n _ ~m/n+3), Bk = 3 + (m -- k ) / n  " 
k=0 

If n and m are the rational numbers,  then expanding f (r) into a series in r and substituting it in (3), we arrive at 

an equation for a flow rate, similar to (9) (see [1 ]), in which 

Tn,m (~) = ~ (Bk/Bo) (~k/n _ ~rren+3). 
k=0 

It is pert inent  to note that ~On, m(r: 0 = O) = 1, Tn, m(Z'w = "CO) = O. 
From the definition of (8) and equation (9) we have 

S = 
n/rn 

t rem rt rern tip (Q/~R2) rein ~On, m (~) 

For the relative change in flow rate we may write 

Q (r)3  r ,w,,O 
Qin Rin tip ~Z'w in/'t'0 in "t'0 in ~n,m (~in) 

R Z'O / m/n m/n rren 

= ( E  tip 
and, consequently, 

= S) m/n 
Q/~ in  (R/Rin)  3 (tip in/tip) (z0 Sin/T0 in �9 

(12) 

In deriving Eq. (12) we have assumed that n and m remain unchanged. 
In the special case n = m, S is t ransformed into the Il 'yushin parameter  I1 whereas Eq. (10) is reduced to 

(6) for n = m = 2 and to (7) for n = m = 3. Next,  we may describe a change in the fluid flow rate as 

Q _ (  R ~3 t ip in  r0 Ilin (13) 

Qin ~ ) ~  tip TO in I1 " 
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Fig. 2. Relative fluid flow rate for different flow models: 1) n = m = 3; 2) n 

= m =2; 3) R = Rin in (14). 

Fig. 3. Flowrate ratio of a Casson fluid and a fluid with n -- m = 3 in its flow 

equation. 

If r0 -- 0, then from (13) we have Q / Q i n  = (R/Rin)3+rn/n(flPin/,U p) (assuming that  Ap/L = const).  

Since at present  we have no data on the change in the analog of plastic viscosity and yield stress during 

hyper thermia  t rea tment ,  we assume that Fp = Ppin and r 0 = T0i n. Then  the relative change in the flow rate  and,  

consequently,  in the mass  velocity of blood flow may be written in a first approximation as 

Wb in I1 " 

Figure 2 shows the relative change in the blood flow rate calculated by equations (5)-(7) and  by (14) for 

R = Rin and Ilin = 1. As is seen, the calculation by (14) for R = Rin and  I1 > 2 shows that  the relative change in 

flow rate is close to the Casson case calculated by (6). For I1 < 2, the calculations by (14) produce much higher 

relative flow rates  than  when Eqs. (5)-(7) are used. In addition, whereas in the range I1 = 1-4 the flow rate  of the 

fluids with m = n = 2 and  m = n = 3, evaluated relative to the Newtonian fluid flow rate,  undergoes an approximate ly  

twofold decrease,  the flow rate  calculated by (14) within the same I I 'yushin  paramete r  range shows a fourfold 

decrease. As is seen, the relative change in flow rate is most pronounced within the range of low viscoplasticity. 

A compar ison  of flow rates for n -- m = 2 a n d  n = m = 3 is given in Fig. 3. It is no tewor thy  that  

lim Qn=2/Qn= 3 = co ra ther  than 2, as might seem from the figure. 

n->0o According to (14), t issue perfusion changes proportionally to the change in size (diameter)  of vessels to 

the third power. Consequently,  equally with the I I 'yushin  paramete r  the ratio ( R / g i n )  determines  the intensi ty of 

heat removal by  blood from the heating zone under  local hyperthermia.  Many works report  different data  on the 

change in d iameter  of vessels exposed to different factors, including thermal  action. For instance, in the case of 

local hyper thermia  of melanoma A-Mel-3 vessel diameters  change ra ther  slightly in the tempera ture  range  from 30 

to 42.5~ [4 ]. But the d iameter  of vessels of normal tissue may  increase by a factor of 1.5 [5 ]. 

Figure 4a shows the calculated max imum tissue tempera ture  as a function of the I I 'yushin  pa ramete r  using 

different methods for  describing the mass  velocity of blood flow (by equations (6), (7) and by  (14) for R = Rin and 

R = 1.SRin). As the initial mass velocity of blood flow, we have adopted rib in = 9 k g / ( m  3. sec). The  calculation is 

made  at P --- 15 W, 2 = 0.4 W / ( m . K ) ,  Bi = 12. 

Figure 4 illustrates the importance of a proper  choice of the method to describe blood flow (the difference 

in the m a x i m u m  tempera tu re s  a t ta ins  15 deg).  Whereas  in the normal  t issue for  the chosen values of the 

thermophysical  parameters  and R = 1.5Rin the temperatures  are in the subcritical range,  in tissues with R = Rin 

they attain dangerous  values (>45~ Calculations for the Casson fluid and the change of blood flow according 

to (5), (6) give safe tempera tures  only for I1 < 2. 
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Fig. 4. Maximum tissue temperature (a) and localization depth of maximum 

tissue heating (b) as a function of the II'yushin parameter: 1) n = m = 3; 2) 

n -- m = 2; 3) R = R i n  in (14); 4) R = 1 .SRin  in (14). tmax,~ Ilmax, cm. 

The change in the depth at which maximum heating is achieved is shown in Fig. 4b. A common tendency, 

independently of the blood flow model and the method for describing the change in perfusion, is increase in the 

depth of maximum heating of the tissue with increase in the II'yushin parameter. However, on the whole this depth 

is rather small (< 1 cm). 

In conclusion, the results of numerical simulation of the change in blood flow as well as in heating of 

homogeneous tissue are indicative of the substantial rheological effect of blood flow on the hyperthermia process. 

The authors thank the Foundation for Fundamental Investigations of the Republic of Belarus for financial 

support of their work in contract B3-222. 

N O T A T I O N  

2, thermal conductivity of the tissue; f, perfusion; Wb, mass velocity of blood flow; Bi, Biot number; D, 
capillary diameter; R, capillary radius; ~, average blood velocity in the capillary; r o, yield stress; Bp, analog of 

plastic viscosity; p, shear rate; r, shear stress; n, m, parameters of the phenomenological Shul'man equation; Q, 

blood flow rate; f(r),  flow curve; Zw, shear stress on the capillary wall; ~, relative width of the quasisolid core; Ap 

/L, pressure gradient in the capillary; I1, rheological factor (II'yushin parameter). Subscripts: in, initial value of a 

parameter (before heating). 
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